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For oxygen reduction at electrodes in acid solutions,  some workers have re- 
ported1,2 t h a t  ovgen reduces oslly t o  water, others that hydrogen peroxide 
e i ther  ea intermediate in the reduction t o  water or a product in the reduction.3-8 
A similar si tuat ion e x i s t s  for alkal ine solution where hydrogen peroxide appars t o  
be a reaction intermediate which reduces further. 

is 

L i t t l e  or no at tent ion vas paid t o  the  possibi l i ty  that para l le l  reactions may 
be present. 
peroxide as a s table  intermediate. I n  the other,  hydrogen proxlde  could form as 
a reaction intermrdiate which then reduces at leas t  partially t o  water. 
parallel reactions may be represented by 

In one reaction, oxygen could be reduced to  water without hydrogen 

These 

(1) 

t o  the  solution 

Xydrogen peroxide, which is an intermediate in path (2), I s  par t ia l ly  reduced 
t o  wa te r  atxl partially diffuses a w  fran the electrode. and I3 cue the 
correspmdlng currents,  srd I4 represents the ra te  by w h i c k &  diffuses avqy. 

Recently, it was demons-trated that it is possible t o  analyze these parallel 
reaction mths, and t o  detemlne whether hydrosen peroxide Is a reaction interned- 
l a b  in a single react ion path, or a product in a reaction path psrallel t o  that 
in uhlch o m e n  is reduced t o  water vlthaut hydrogen p r d e  intumediate.g For 
t h i s  arralysla, a ro ta t ing  disk electrode with a concentric r lng is used. 

I n  t h i s  cammica t ion ,  the application of the rotatlng disk electrode with 
the  concentric ring in the study of axyeen reduction at Pt, Rh and Au disk elec- 
trodes in acid and alkriL5ne solutions is descrlbed, and somc data are presented cud 
dlscussed. 

If hydrogen peroxide is formed at the test, the disk electrode, kspt at a 
required potential, it nqy diffuse away f r c r m  tha disk t o  the rlng electrode. The 
potential  of the rw electrode is kept at 1.4 V* so that all hydrcgen phroxi.de 
which diituses to the r ing  electrode is oxidized slld detected. For the current 
a t  the disk electrode at a given potential, 4 ,  cud the current at the ring elec- 
trode, Ir, the follCniag relatiorrsblp holds 

(3) 

Here, 19 is a gecmrstrical factor  which depeds on the dimensions of tho disk &d 

* A l l  pOtenttal6 are v l t h  respect t o  the hydrcgen electrode in the  sane solution. 



electrodes, D i s  the diffusion coeff ic ient  for  the react ion intermediates, v 
i s  kinematic viscosity, k3 is  the r a t e  constant for the  reduction of H202 in te r -  
mediate a t  the disk electrode and w i s  the r a t e  of disk rotat ion.  
x is  defined as 

with 11 being the partial current due t o  the reduction of oxygen t o  water i n  the 
path without hydrogen peroxide intermediate, and I2 the pa r t i a l  current due t o  the 
reduction t o  hydrogen peroxide. 

From the plots of I&. against w-'i2 the  intercept with the I,-& axis, 

In this  equation, 

x = 11/12 (4) 

Intercept = (x + l)b, (5)' 

can be reed. With N known, x can be calculated and hence the r a t i o  11/12 obtained. 

R,Rh and Au d i s k  electrodes are examined in  acid (0.1 N H2S04) and alkal ine 
(0.1 N KOH) solutions saturated at room tempeyature by 0, under 1 a b .  pressure. 
Currents at the disk and r ing electrodes have been measured as functions of the 
disk potent ia l  and for  various r s t e s  of disk ro ta t ion .  

a ser ies  of l ines  para l le l  t o  the d - T 2  axis (Fig. 1).  Each l i ne  corresponds t o  a 
given potent ia l  of the disk electrode and has an intercept with Id/% axis  greater 
than 1 / N .  
Hydrogen peroxide i s  produced i n  a path parallel t o  the reaction path which does 
not involve H202 as an intermediate. 
intercepts  are a l l  greater  than 20, and x >.7.6 (N = 0.38). Hence, the  major reac- 
t i on  is  tha t  in which O2 i s  reduced t o  €I20 without H202 intermediate (9096 or more of 
the t o t a l  current). 
small. 
fur ther  t o  water with any rate comparable t o  tha t  by which it is produced. 

For Pt electrode : 1 1 ,'i sc3utiD the ?lots  of k/L, against W-1/2 consists o f  

Hence, oxygen reduction proceeds a l o w  two p a l l e l  react ion paths. 

A t  potent ia ls  anodic to ,  say, 0.60 V, the  

Since the slopes of the lines are  zero, k3 in  equation (3)  i s  
It implies that H202 formed i n  the pa ra l l e l  react ion path i s  not reduced 

The solution in  which the above ex_mrimental data  are obtained was prepared 
from l'Baker Analyzed Reagent" H$O4 and conductivity water. 
solution was further purified electrochemically, no hydrogen peroxide is detected 
t o  form at  potent ia ls  anodic t o  0.150 V. Such a d i f fe ren t  behavior of the elec- 
trode i n  "pure" and "insufficiently" purified solutions is believed t o  be due t o  
the adsorption a t  the electrode surface of res idual ,  mostly organic, impurities 
f r o m  the solution. 

However, if  t h i s  

A t  P t  electrode in alkaline solution, h/Ir plots  reveal t ha t  oxygen reduc- 
t i on  proceeds w i t h  comparable r a t e s  along two react ion paths (Fig. 2). I n  one of  
these mths, hydrogen peroxide is an intermediate which partially reduces further. 
In contrast t o  Pt electrode in acid solution, Pt electrode in alkaline solution 
appeared t o  be not affected by the presence of res idual  impurities in  the  S O l U t i O n .  

SimiLas experiments with Rh i n  acid solution shaued tha t  the behavior of the 
electrode is a l so  affected by purif icat ion of the solution. 
purified solutions, li& is  formed i n  a ,path paralLel t o  that in which 9 is 
reduced t o  water without hydrogen peroxide as an intermediate. 
is the reduction t o  H20 without hydrogen peroxide intermediate. 
pt electrode, at potent ia ls  cathodic t o  0.60 V hydrogen peroxide formed at Rb 
electrode reduces, at least mially, further  t o  water. 
oxygen reduction a t  Rh electrode proceeds along a single  react ion path which does 
not involve hydrogen peroxide in te rmdia te .  
t i o n  path is that Fn which @ is  reduced t o  hydrogen peroxide. m o g e n  peroxide 
reduces further t o  water. 

In "insufficiently" 

The major reaction 
In contrast t o  8 

In "pure" acid solutions 

In alkaline solution, the major rem- 
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For a gold electrode i n  acid solution , the current-potential  relationship f o r  
This i s  i l l u s t r a t e d  i n  Figure 3. oxygen reduction has a character is t ic  "S" shape. 

Two l inear  regions i n  V-log i plots  axe evident, each with a slope close t o  -=T/F. 
S i m i l a r  resu l t s  have previously been reported .7 
t ion  i n  these two regions can now be examined by the d i s k  electrode w i t h  a concen- 
t r i c  ring. 

Reaction path for  oxygen reduc- 

t i a l  
of 

The plots of Id/Ir  against  a-1/2 me sham i n  Figures 4 and 5.  
r 

I n  the poten- 
e 0.55 - 0.65 V ,  t h e  Id/Ir lines have negative 

The l ines  a re  essent ia l ly  para l le l  t o  the  
but show positive s l o p s  a t  0.20 V and m o r e  cathodic potent ia ls .  
the lines w i t h  the  u/Ir axis  i n  the potent ia l  range 0.00 t o  0.35 V a re  clustered 
between 2.7 and 3. A t  higher potent ia ls ,  the intercepts  increase with increasing 
potent ia l .  Ln contrast  t o  Pt and Rh,  oqgen reduction at Au electrodes is  not 
affected by the presence of residual impurities i n  solution. 

opes a t  smaller values 
axis  from 0.50 t o  0.25 v 

The intercepts of 

Ran the intercept given by (5) , and with N equal t o  0.39, it appears that  at 
and below 0.30 V x is small. 
proceeds along a single react ion path with hydrogen peroxide as an intermediate. 
and below 0.20 V ,  hydrogen peroxide intermediate reduces fur ther  t o  water w i t h  a 
r a t e  which increases with decreasing electrode potent ia l .  
0.35 - 0.55 V ,  x r 0 and hence oxygen reduction proceeds with nearly equal ra tes  
along two parallel react ion paths. 
reaction is the reduction of oqgen  t o  water without hydrogen peroxide intermediate. 
Hydrogen peroxide which at these high potent ia ls  forms i n  a parallel path does 
not reduce t o  xater with any signif icant  rate. A representation of t h i s  discussion 
is sham also in Figure 3. Jus t  at t h e  poten t ia l  at which there is  the change f r o m  
one Tafel region i n  the  V-log i curve t o  the other,  the change in the importance of 
the  reactbn paths occurs. 
mainly t o  water while at potent ia ls  cathodic t o  0.5 V, the  main path is that i n  
which owgen i s  reduced t o  hydrogen peroxide. 

With x = 0, oxygen reduction a t  Au i n  acid solution 
At  

In the potent ia l  region 

A t  s t i l l  higher electrode potentials,  the major 

Thus, at potent ia ls  anodic t o  0.60 V, Oqgen is  reduced 

6 The c'haracteristic change i n  the V-log i curve at a current of about 5.10- A 
resembles the attainment of a l imit ing current f o r  the  react ion which predominates I 
i n  the low current densi ty  region, u n t i l  another reaction, which predominates i n  
the high current density region, takes over. 
t h i s  change i n  the react ion other than the surface heterogeneities.  
e i t y  of t h e  electrode surface i s  assumed, about 1% of sape active "s i tes"  w i l l  be 
enough t o  sustain the major reaction i n  the region of low currents.  
of Q/L, l ines  in Figure 5 ,  suggest a l so  tha t  t h i s  major react ion,  which is reduc- 
t i o n  of oxygen t o  water, occurs a t  some act ive "sites." These slopes are observed 
i n  the current region i n  which the reduction t o  water becomes apparently diffusion 
controlled. 
"s i tes"  increases and so does the  current f o r  the reduction of oxygen t o  water. 
Consequently, the disk current increases while the r ing  current remains un w e d ,  

It is  d i f f i c u l t  t o  see any reason for 
I f  heterogen- 

Negative slopes ~ 

With increasing r a t e  of d i s k  rotat ion,  diffusion of oxygen t o  these 

and, for  the sane electrode potent ia l ,  I&/% decreases with increasing c u - l  $" '. 
In alkaline solut ion a t  gold electrode it appears that oxygen reduction pro- 

ceeds along a single react ion path w i x h  hydrogen peroxide as an intermediate which 
reduces rwthc r  t o  water. 

' 

F r m  the slopes of the l ines  of Id/% against  w - ' / ~ ,  k in equation (3) Can be 
calculated for  a given potent ia l .  In Figure 6, log k3 i s  p-ot tedgainst  3 potential  
for  the reduction at Pt electrodes i n  alkaline solution. If a s t ra ight  l ine  were 
drawn through the points,  the slope would be about 0.6 V .  
s lo -  fcr  the change of the log  r a t e  with potent ia l  probably indicates that the 
reduction of hydrogen peroxide is  controlled by a chemical ra ther  than a chtwge 
t r a n s f e r  s tep.  

This unusually high 

Accordingly, two -wssible mechanisms f o r  the reduction of hydrogen 
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peroxide at F't in alkal ine solut ion nay be suggested: 

or 

I 

%02 4 2 OH 

OH + e' = OH- 

H202 + Pt+ PtO + €320 

P t O  + H20 + 2e- Ft + 2 OH- 
These mechanisms are indistinguishable by usual electrochemical means. Similar 
s i t ua t ion  ex is t  for Rh and AU electrodes in  a lkal ine solution. 

The above exanples c lear ly  demonstrate the canplexity of oqgen reduction 
More often than not ,  parallel react ion paths are  present, Far- a t  electrodes. 

t i cu l a r ly  a t  lower potent ia ls  and insuf f ic ien t ly  pure solutions. 
peroxide formed in a parallel react ion or as a react ion intermediate in a single 
react ion pftth, it may reduce fur ther  with the r a t e  lower than that by which it i s  
forrned. 
electrode with the concentric ring in the study of parallel. react ion paths. 

If hydrogen 

The same examples also i l l u s t r a t e  the s u i t a b i l i t y  of the ro ta t ing  disk 
,, 
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F16.3 Disk current. Au in 0.1 N H2S04. Minor reaction given 
in brockets. 
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